APS News

December 1998 (Volume 7, Number 11)

Physical Review Focus

Physical Review Focus is a FREE APS electronic journal featuring selections from Physical Review Letters explained at a level accessible to all physicists. The editor is David Ehrenstein [see April 1998 APS News]. APS News is printing samplings from PR Focus to introduce the membership to this new journal. To receive one-paragraph introductions (such as the one below) each week by e-mail, send a blank message to join-focus@aps.org, or go to the list.

Atom Wire Resists Conventions

World's smallest wire. Electron density contours show the six-atom chain and semi-infinite slabs of metal used for the calculation of atom wire conductivity.Phys. Rev. Lett. 81, 3515.
World's smallest wire. Electron density contours show the six-atom chain and semi-infinite slabs of metal used for the calculation of atom wire conductivity.Phys. Rev. Lett. 81, 3515.

As the electronic circuits on chips continue to be miniaturized, physicists have naturally looked ahead to the smallest wires possible: those made of only a few atoms or molecules. Researchers have made some rudimentary versions in the lab, but the electrical properties of atomic wires are not well understood. Calculations published in the 19 October PRL show that even in a simple example, those properties can be surprising. While a normal wire increases its resistance with increasing length, they found that the resistance of a chain of carbon atoms oscillates with length, becoming higher for an even number of atoms than for an odd number. The results show that the connections at either end of the atom wire have important effects on the wire's properties and must be studied in more detail before the technology can be implemented.

Atom wires are not only small; their lack of impurities should allow them to carry thousands of times the current density that normal copper wires can handle, according to Phaedon Avouris of the IBM Watson Research Center in Yorktown Heights, NY. He also sees atom wires as model systems for learning about carbon nanotubes, the molecular cousins of buckyballs that many researchers see as today's most practical nanoscale wires. To better understand the properties of these tiny conductors, Avouris and his IBM colleague Norton Lang analyzed a wire made of between three and seven carbon atoms attached to large chunks of metal at each end, which represented connections to a macroscopic circuit. Assuming 0.01 volts were applied across the wire, they calculated its conductance (inverse of resistance).

According to their calculations, the conductance of such a wire does not change continuously with length, but is higher for odd numbers of atoms than for even numbers. The reason, they found, is that for three, five, or seven carbon atoms, there are more available states for electrons to occupy as they traverse the wire. This pattern is determined not only by the structure of the free carbon chain, but also by the number of extra electrons that are permanently drawn onto the wire from the metal contacts. Lang and Avouris also looked at the wire's conductance as the two electrodes are moved apart, keeping the wire fixed in length and centered between them. Again, the result was surprising: The conductance drops, then increases to a maximum with increasing distance, even as the electrodes' contact with the wire worsens.

Both results point to the importance of the carbon-metal interactions, says Uzi Landman, of the Georgia Institute of Technology in Atlanta. "It's not enough anymore to just study the nanowire itself because everything can change when you make the contact." He says researchers have suspected the importance of metal contacts with carbon-based wires, but "nobody actually did a hard calculation." Landman says the work should inspire other theorists to perform more detailed calculations of these effects and experimentalists to test the predictions.

This PR Focus article appeared in PR Focus vol. 2, story 20, posted October 23, 1998. Primary material: Oscillatory Conductance of Carbon-Atom Wires, N.D. Lang and Ph. Avouris, Phys. Rev. Lett. 81, 3515 (19 October 1998).

[Note: A line was dropped from the first paragraph of the November PR Focus article. The on-line version has the correction.]

©1995 - 2024, AMERICAN PHYSICAL SOCIETY
APS encourages the redistribution of the materials included in this newspaper provided that attribution to the source is noted and the materials are not truncated or changed.

Editor: Barrett H. Ripin

December 1998 (Volume 7, Number 11)

APS News Home

Issue Table of Contents

APS News Archives

Contact APS News Editor


Articles in this Issue
Centennial News: Centennial Travel Awards for NY State High School Teachers
Centennial News: A Century of Physics Timeline Decade
Centennial News: Senior/Retired Member Breakfast at Centennial
Centennial News: Attend a Grand Reunion at the Centennial
George Trilling Elected APS Vice-President
Physicists Win Nobel Prizes in Physics and Chemistry
Elucidating the Hall Effect
Rooney Tackles Wide Range of S&T Issues as Congressional Fellow
Distinguished Traveling Lecturer Program in Laser Science
Tenure Task Force Submits Final Report
Executive Board Reaffirms 1995 EMF Statement
Physical Review Focus
Meeting Briefs
Science Policy and Science Community
How Duct Tape Sealed My Place in History
The Back Page
Zero Gravity: The Lighter Side of Science